Abstract

Ethylene is an important hormone in plant growth, development and responses to environmental stimuli. The ethylene-signaling pathway is initiated by the induction of ethylene biosynthesis, which is under tight regulation at both transcriptional and post-transcriptional levels by exogenous and endogenous cues. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme that catalyzes the committing step of ethylene biosynthesis. Recently, we found that ACS2 and ACS6, two isoforms of the Arabidopsis ACS family, are substrates of a stress-responsive mitogen-activated protein kinase (MAPK) cascade. Phosphorylation of ACS2/ACS6 by MPK6 leads to the accumulation of ACS proteins and the induction of ethylene. In this report, we demonstrate that unphosphorylated ACS6 protein is rapidly degraded by the 26S proteasome pathway. The degradation machinery targets the C-terminal non-catalytic domain of ACS6, which is sufficient to confer instability to green fluorescent protein and luciferase reporters. Phosphorylation of ACS6 introduces negative charges to the C-terminus of ACS6, which reduces the turnover of ACS6 by the degradation machinery. Consistent with this, other nearby conserved negatively charged amino acid residues are essential for ACS6 stability regulation. Protein degradation and phosphorylation are two important post-translational modifications of proteins. This research reveals an intricate interplay between these two important processes in controlling the levels of cellular ACS activity, and thus ethylene biosynthesis. The post-translational nature of both processes ensures a rapid response of ethylene induction, which is detectable within minutes after plants are exposed to stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.