Abstract

Hypoxia-reoxygenation of cultured macrovascular endothelial cells is used to study ischemia-reperfusion (IR)-related cellular and molecular changes; however, these models do not accurately depict events in pulmonary microvascular endothelial cells (PMVECs) during conventional lung retrieval and transplantation. We used rat PMVECs in a new non-hypoxic cell-based lung transplantation model to assess these events. To simulate cold storage, rat PMVECs were preserved in 95% O2-5% CO2 at 4°C for 6 hours in low-potassium dextran solution. Dishes were warmed for 1 hour to room temperature for simulating implantation. Medium was added at 37°C in 50% O2-5% CO2-45% N2 to simulate reperfusion. Additional PMVECs were transfected with siRNA targeting mitogen-activated protein kinases (MAPKs) and then subjected to simulated IR. MAPKs and NF-κB were activated during simulated reperfusion, and AP-1 was activated during ischemia and reperfusion. Increased malondialdehyde levels were found during cold ischemia, and apoptosis and production of IL-1β, IL-6, and TNF-α were observed during reperfusion. Silencing of MAPKs attenuated oxidative stress, inflammation and apoptosis. Silencing of JNK and p38 decreased NF-κB phosphorylation and increased inhibitor of NF-κB (IκB)α levels. Knockdown of ERK1/2 increased NF-κB phosphorylation but had no effect on IκBα expression. Silencing of JNK and ERK1/2, but not p38, decreased AP-1 phosphorylation. Exposing rat PMVECs to simulated non-hypoxic IR caused lipid peroxidation, inflammation and apoptosis, which required MAPK-mediated NF-κB and AP-1 activation and distinct regulation of MAPKs by these 2 transcription factors. This model could be used to uncouple mechanisms of IR and evaluate potential therapeutics in alleviating IR injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.