Abstract
MicroRNAs (miRNAs) mediate post-transcriptional gene suppression and are a critical component of the complex regulatory networks in epithelial immune responses. Transcription of miRNA genes in epithelial cells can be elaborately controlled through Toll-like receptors (TLRs), and associated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to nuclear transcription factor associated-transactivation and transrepression of miRNAs. MiRNA, let-7f is involved in the regulation of innate immune responses post TLR3 stimulation in human endocervical cells (End1/E6E7) and decreased let-7f is associated with poor immune activation. Thus, expression of let-7f is under strict control. However, the mechanism by which let-7f is regulated in these cells is not known. Therefore, in the present study, we have investigated the role of MAPK and NF-κB in the transcription of let-7f. We report that signalling of TLR3, results in activation of multiple signalling pathways including MAPK/ERK, JNK, p38, and NF-κB. Of these MAPK/ p38 and JNK directly influence the expression of let-7f in End1/E6E7 cells. Inhibition of ERK and NF-κB up regulates the expression of let-7f and its transcription factor, C/EBPβ. In conclusion, we have identified a system through which TLR3 mediated immune response is regulated by C/EBPβ and let-7f through the temporal activation of MAPK and NF-κB in human endocervical cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.