Abstract

In mobile systems, the problems of short battery life and increased temperature are exacerbated by wasted leakage power. Leakage power waste can be reduced by power-gating a core while it is stalled waiting for a resource. In this work, we propose and model memory access power gating (MAPG), a low-overhead technique to enable power gating of an active core when it stalls during a long memory access. We describe a programmable two-stage power gating switch design that can vary a core's wake-up delay while maintaining voltage noise limits and leakage power savings. We also model the processor power distribution network and the effect of memory access power gating on neighboring cores. Last, we apply our power gating technique to actual benchmarks, and examine energy savings and overheads from power gating stalled cores during long memory accesses. Our analyses show the potential for over 38% energy savings given “perfect” power gating on memory accesses; we achieve energy savings exceeding 20% for a practical, counter-based implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.