Abstract

Designing software systems that have to deal with dynamic operating conditions, such as changing availability of resources and faults that are difficult to predict, is complex. A promising approach to handle such dynamics is self-adaptation that can be realized by a MAPE-K feedback loop (Monitor-Analyze-Plan-Execute plus Knowledge). To provide evidence that the system goals are satisfied, given the changing conditions, the state of the art advocates the use of formal methods. However, little research has been done on consolidating design knowledge of self-adaptive systems. To support designers, this paper contributes with a set of formally specified MAPE-K templates that encode design expertise for a family of self-adaptive systems. The templates comprise: (1) behavior specification templates for modeling the different components of a MAPE-K feedback loop (based on networks of timed automata), and (2) property specification templates that support verification of the correctness of the adaptation behaviors (based on timed computation tree logic). To demonstrate the reusability of the formal templates, we performed four case studies in which final-year Masters students used the templates to design different self-adaptive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call