Abstract
The regulatory mechanism on granulosa cells (GCs) oxidative injury is becoming increasingly important in polycystic ovary syndrome (PCOS) studies. Serine/threonine kinase mitogen-activated protein 4 kinase 4 (Map4k4) is linked with oxidative injury and possibly associated with premature ovarian failure and ovarian dysgenesis. Herein, we investigated the function and mechanism of Map4k4 in a PCOS rat model. A microarray from GEO database identified Map4k4 was up-regulated in the ovarian of PCOS rats, and functional enrichments suggested that oxidative stress-associated changes are involved. We verified the raised Map4k4 expression in an established PCOS rat model and also in the isolated PCOS-GCs, which were consistent with the microarray data. Map4k4 knockdown in vivo contributed to regular estrous cycle, restrained steroid concentrations and ovarian injury in PCOS rats. Both Map4k4 silencing in vivo and in vitro attenuated the PCOS-related GC oxidative stress and apoptosis. Mechanically, Map4k4 activated the JNK/c-JUN signaling pathway. Importantly, a JNK agonist restored the suppressive effects of Map4k4 silencing on PCOS-induced granulosa cell injury and oxidative stress. Besides, Map4k4 may be a target gene of miR-185-5p. In conclusion, Map4k4, a potential target of miR-185-5p, is up-regulated and induces ovarian GC oxidative injury by activating JNK/c-JUN pathway in PCOS. The Map4k4/JNK/c-JUN mechanism may provide a new idea on the treatment of PCOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.