Abstract

PurposeThis paper aims to study the localization problem for autonomous industrial vehicles in the complex industrial environments. Aiming for practical applications, the pursuit is to build a map-less localization system which can be used in the presence of dynamic obstacles, short-term and long-term environment changes.Design/methodology/approachThe proposed system contains four main modules, including long-term place graph updating, global localization and re-localization, location tracking and pose registration. The first two modules fully exploit the deep-learning based three-dimensional point cloud learning techniques to achieve the map-less global localization task in large-scale environment. The location tracking module implements the particle filter framework with a newly designed perception model to track the vehicle location during movements. Finally, the pose registration module uses visual information to exclude the influence of dynamic obstacles and short-term changes and further introduces point cloud registration network to estimate the accurate vehicle pose.FindingsComprehensive experiments in real industrial environments demonstrate the effectiveness, robustness and practical applicability of the map-less localization approach.Practical implicationsThis paper provides comprehensive experiments in real industrial environments.Originality/valueThe system can be used in the practical automated industrial vehicles for long-term localization tasks. The dynamic objects, short-/long-term environment changes and hardware limitations of industrial vehicles are all considered in the system design. Thus, this work moves a big step toward achieving real implementations of the autonomous localization in practical industrial scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.