Abstract
Regulator of calcineurin 1 (RCAN1) is located close to the Down syndrome critical region (DSCR) on human chromosome 21 and is related to the Down syndrome (DS) phenotype. To identify a novel binding partner of RCAN1, we performed yeast two-hybrid screening and identified mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) as a partner. MEK1 was able to bind and phosphorylate RCAN1 in vitro and in vivo. MEK1-dependent RCAN1 phosphorylation caused an increase in RCAN1 expression by increasing the protein half-life. Nerve growth factor (NGF)-dependent activation of the MEK1 pathway consistently induced RCAN1 expression. Moreover, we found that RCAN1 overexpression inhibited NGF-induced neurite outgrowth and expression of neuronal marker genes, such as growth cone-associated protein 43 (GAP43) and synapsin I, via inhibition of MEK1-ERK1/2 pathways. Our findings provide evidence that MEK1-dependent RCAN1 phosphorylation acts as an important molecular mechanism in the control of neuronal differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.