Abstract
The signalling protein Wnt regulates transcription factors containing high-mobility-group (HMG) domains to direct decisions on cell fate during animal development. In Caenorhabditis elegans, the HMG-domain-containing repressor POP-1 distinguishes the fates of anterior daughter cells from their posterior sisters throughout development, and Wnt signalling downregulates POP-1 activity in one posterior daughter cell called E. Here we show that the genes mom-4 and lit-1 are also required to downregulate POP-1, not only in E but also in other posterior daughter cells. Consistent with action in a common pathway, mom-4 and lit-1 exhibit similar mutant phenotypes and encode components of the mitogen-activated protein kinase (MAPK) pathway that are homologous to vertebrate transforming-growth-factor-beta-activated kinase (TAK1) and NEMO-like kinase (NLK), respectively. Furthermore, MOM-4 and TAK1 bind related proteins that promote their kinase activities. We conclude that a MAPK-related pathway cooperates with Wnt signal transduction to downregulate POP-1 activity. These functions are likely to be conserved in vertebrates, as TAK1 and NLK can downregulate HMG-domain-containing proteins related to POP-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.