Abstract

With the advent of the Internet of things, massive machine-type communications (mMTC) have become one of the most important requirements for next generation communication systems. In the mMTC scenarios, grant-free nonorthogonal multiple access on the transmission side and compressive sensing-based multi-user detection (CS-MUD) on the reception side are a promising solution because many users sporadically transmit small data packets at low rates. In this paper, we propose a novel CS-MUD algorithm for the active user and data detection in the mMTC systems. The proposed scheme consists of the maximum a posteriori probability (MAP) based active user detector (MAP-AUD) and the MAP-based data detector (MAP-DD). By exchanging the extrinsic information between MAP-AUD and MAP-DD, the proposed algorithm improves the active user detection performance and the reliability of the data detection. In addition, we extend the proposed algorithm to exploit group sparsity. By jointly processing the multiple received data with common activity, the proposed algorithm dramatically enhances the active user detection performance. We show by numerical experiments that the proposed algorithm achieves a substantial performance gain over existing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.