Abstract

Conduct disorder (CD), a common psychiatric disorder in children and adolescents, is characterized by encroaching upon other rights and violations of age-appropriate social expectations repeatedly and persistently. Individuals with CD often have high aggressiveness and low inhibitory capacity. The monoamine oxidase A (MAOA) gene has long been associated with aggression. Effects of MAOA genotype on inhibitory control have been examined in general population. Several studies had revealed reduced activation in prefrontal areas, especially theanterior cingulate cortex (ACC), in low-expression MAOA (MAOA-L) allele carriers compared to high-expression MAOA (MAOA-H) allele carriers. However, little is known about its genetic risk influences on inhibitory processes in clinical samples. In this study, functional magnetic resonance imaging (fMRI) was administered to a sample of adolescent boys with CD during the performance of a GoStop task, 29 of whom carrying MAOA-L allele and 24 carrying MAOA-H allele. Relative to MAOA-H carriers, MAOA-L carriers in CD showed more pronounced deactivation in the precuneus, supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC). Deactivation within the default mode network (DMN) and inhibitory-related areas in MAOA-L carriers may be related to compensation for low sensitivity to inhibition and/or an atypical allocation of cognitive resources. The results suggested a possible neural mechanism through which MAOA affects inhibitory processes in a clinical sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call