Abstract
AbstractDue to the complexity of the supply chain with multiple conflicting objectives requiring a search for a set of trade-off solutions, there has been a range of studies applying multi-objective methods. In recent years, there has been a growing interest in the area of many-objective (four or more objectives) optimisation which handles difficulties that multi-objective methods are not able to overcome. In this study, we explore formulation of Supply Chain Management (SCM) problem in terms of the possibility of having conflicting objectives. Non-dominated Sorting Genetic Algorithm-III (NSGA-III) is used as a many-objective algorithm. First, to make an effective search and to reach solutions with better quality, parameters of algorithm are tuned. After parameter tuning, we used NSGA-III at its best performance and tested it on twenty four synthetic and real-world problem instances considering three performance metrics, hypervolume, generational distance and inverted generational distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.