Abstract

Synchronization of coupled oscillators on a d-dimensional lattice with the power-law coupling G(r) = g0/rα and randomly distributed intrinsic frequency is analyzed. A systematic perturbation theory is developed to calculate the order parameter profile and correlation functions in powers of ϵ = α/d-1. For α ≤ d, the system exhibits a sharp synchronization transition as described by the conventional mean-field theory. For α > d, the transition is smeared by the quenched disorder, and the macroscopic order parameter ψ decays slowly with g0 as |ψ| ∝ g(0)(2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call