Abstract
We investigate the relation between thermalization following a quantum quench and many-body localization in quasi-particle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work (Canovi et al 2011 Phys. Rev. B 83 094431), we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long-time distribution functions appear to always agree qualitatively with the equilibrium ones, quantitative agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.