Abstract

In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have determined the hydrodynamic function H(q), for a varying range of electrosteric repulsion. We show that H(q) can be quantitatively described by means of a novel Stokesian dynamics simulation method for charged Brownian spheres, and by a modification of a many-body theory developed originally by Beenakker and Mazur. Very importantly, we can explain the behavior of H(q) for strongly correlated particles without resorting to the controversial concept of hydrodynamic screening, as was attempted in earlier work by Riese [Phys. Rev. Lett. 85, 5460 (2000)].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call