Abstract
Ab-initio Quantum Monte Carlo (QMC) calculations of nuclei from deuterium to 40Ca, obtained using four different phenomenological and local chiral nuclear potentials, are analyzed using the Generalized Contact Formalism (GCF). We extract spin- and isospin-dependent "nuclear contact terms" for each interaction in both coordinate and momentum space. The extracted contact terms, that count the number of short-range correlated (SRC) pairs with different quantum numbers, are dependent on the nuclear interaction model used in the QMC calculation. However, the ratios of contact terms for a nucleus A to deuterium (for spin-1 pn pairs) or to 4He (for all NN pairs) are independent of the nuclear interaction model and are the same for both short-distance and high-momentum pairs. This implies that the relative abundance of short-range pairs in the nucleus is a long-range (mean-field) quantity that is insensitive to the short-distance nature of the nuclear force. Measurements of exclusive (e,e'NN) pair breakup processes are instead more sensitive to short-range dynamics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.