Abstract

I review many-body effects on the resistivity of a multi-orbital system beyond Landau's Fermi-liquid (FL) theory. Landau's FL theory succeeds in describing electronic properties of some correlated electron systems at low temperatures. However, the behaviors deviating from the temperature dependence in the FL, non-FL-like behaviors, emerge near a magnetic quantum-critical point (QCP). These indicate the importance of many-body effects beyond Landau's FL theory. Those effects in multi-orbital systems have been little understood, although their understanding is important to deduce ubiquitous properties of correlated electron systems and characteristic properties of multi-orbital systems. To improve this situation, I formulate the resistivity of a multi-orbital Hubbard model using the extended Éliashberg theory and adopt this method to the inplane resistivity of quasi-two-dimensional paramagnetic ruthenates in combination with the fluctuation-exchange approximation including the current vertex corrections arising from the self-energy and Maki–Thompson term. The results away from and near the antiferromagnetic QCP reproduce the temperature dependence observed in Sr 2 RuO 4 and Sr 2 Ru 0.075 Ti 0.025 O 4, respectively. I highlight the importance of not only the momentum and the temperature dependence of the damping of a quasiparticle but also its orbital dependence in discussing the resistivity of correlated electron systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.