Abstract

Molecular dynamics simulation has been performed to obtain the pressure and self-diffusion coefficient of supercritical carbon dioxide using a two-body HFD (Hartree–Fock dispersion)-like potential determined via the inversion of reduced viscosity collision integrals at zero pressure. We have also obtained pressures of CO2–Ar and CO2–CH4 fluid mixtures at constant temperatures at different densities using new accurate two-body HFD-like potential functions. To take many-body forces into account, the three-body potentials of Hauschild and Prausnitz [27], Wang and Sadus [30,38], Oakley et al. [3], and Guzman et al. [33] have been used with the two-body potentials. The significance of this work is that the modified many-body potential of Hauschild and Prausnitz (extended as a function of density, temperature, and molar fraction) has been used with the two-body HFD-like potentials of CO2, CO2–Ar, and CO2–CH4 systems to improve the prediction of the pressure values without requiring an expensive three-body calculation. The results are in good agreement with experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call