Abstract

Within mean-field theory we calculate the scaling functions associated with critical Casimir forces for a system consisting of two spherical colloids immersed in a binary liquid mixture near its consolute point and facing a planar, homogeneous substrate. For several geometrical arrangements and boundary conditions we analyze the normal and the lateral critical Casimir forces acting on one of the two colloids. We find interesting features such as a change of sign of these forces upon varying either the position of one of the colloids or the temperature. By subtracting the pairwise forces from the total force we are able to determine the many-body forces acting on one of the colloids. We have found that the many-body contribution to the total critical Casimir force is more pronounced for small colloid-colloid and colloid-substrate distances, as well as for temperatures close to criticality, where the many-body contribution to the total force can reach up to 25%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.