Abstract

The combination of short-range repulsive and long-range attractive forces in many-body dissipative particle dynamics (MDPD) is examined at a vapor/liquid and liquid/solid interface. Based on the radial distribution of the virial pressure in a drop at equilibrium, a systematic study is carried out to characterize the sensitivity of the surface tension coefficient with respect to the inter-particle interaction parameters. For the first time, the approximately cubic dependence of the surface tension coefficient on the bulk density of the fluid is evidenced. In capillary flow, MDPD solutions are shown to satisfy the condition on the wavelength of an axial disturbance leading to the pinch-off of a cylindrical liquid thread; correctly, no pinch-off occurs below the cutoff wavelength. Moreover, in an example that illustrates the cascade of fluid dynamics behaviors from potential to inertial-viscous to stochastic flow, the dynamics of the jet radius is consistent with the power law predictions of asymptotic analysis. To model interaction with a solid wall, MDPD is augmented by a set of bell-shaped weight functions; hydrophilic and hydrophobic behaviors, including the occurrence of slip in the latter, are reproduced using a modification in the weight function that avoids particle clustering. The dynamics of droplets entering an inverted Y-shaped fracture junction is shown to be correctly captured in simulations parametrized by the Bond number, confirming the flexibility of MDPD in modeling interface-dominated flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call