Abstract

A theoretical study of excitonic Rabi oscillations in semiconductor quantum wells is presented. Fundamental differences between excitonic Rabi oscillations and optical Rabi oscillations in ideal atomic or molecular 2-level systems are due to the existence of the continuous 1-particle spectrum in solids (energy bands) and the resulting strong effects of the Coulomb interaction, such as the attractive electron-hole interaction and the repulsive exchange interaction. In spite of these fundamental differences, Rabi-like oscillations of the excited electron-hole densities are computed for the case of resonant optical pumping of excitons. We compare our theoretical results with our recent experimental observation of excitonic Rabi oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.