Abstract

We showed earlier that transfers of large populations of RNA viruses lead to fitness gains and that repeated genetic bottleneck transfers result in fitness losses due to Muller's ratchet. In the present study, we examined the effects of genetic bottleneck passages intervening between population passages, a process akin to some natural viral transmissions, using vesicular stomatitis virus as a model. Our findings show that the pronounced fitness increases that occur during two successive population passages cannot overcome the fitness decreases caused by a single intervening genetic bottleneck passage. The implications for natural transmissions of RNA viruses are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.