Abstract
At early developmental stages in the rat spinal cord (embryonic day 13), when neuronal progenitors are still proliferating, most differentiating neurons express truncated forms of glutamic acid decarboxylase (GAD) (approximately 25 kDa) which are the products of alternative splicing of the GAD 67 gene. These truncated proteins do not appear to synthesize γ-aminobutyric acid (GABA). The amino acid is detected in cells only after alternative splicing of the GAD 67 gene generates a full-length, 67 kDa enzymatically active form of GAD. Both the 67 kDa GAD and GABA colocalize and appear diffusely distributed in the cytoplasm of embryonic neurons. GABA does not appear associated with synaptic vesicles until after birth, when its intracellular distribution becomes punctate and it colocalizes with synaptophysin. At this time, it also colocalizes with an immunologically distinct 65 kDa GAD protein encoded by a second GAD gene (GAD 65). Expression of different GAD-related proteins with distinct intracellular distributions during development suggests that GABA, the product of these enzymes, may have trophic or metabolic roles during spinal cord differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.