Abstract

Multiple quantum (MQ) NMR with a dipolar ordered initial state opens new possibilities for the exploration of many-spin entanglement. In this paper, we investigate many-spin entanglement in a gas of spin-carrying molecules (atoms) in nanocavities in the conditions of MQ NMR with a dipolar ordered initial state. The second moment of the distribution of the intensities of MQ NMR coherences, which provides a lower bound on the quantum Fisher information, is used for an estimate of the number of the entangled spins. Many-spin entanglement is investigated at different temperatures and different numbers of spins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.