Abstract
We use a multidimensional diffusion process to approximate the dynamics of a queue served by many parallel servers. Waiting customers in this queue may abandon the system without service. To analyze the diffusion model, we develop a numerical algorithm for computing its stationary distribution. A crucial part of the algorithm is choosing an appropriate reference density. Using a conjecture on the tail behavior of the limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments demonstrate that the diffusion model is a satisfactory approximation for many-server queues, sometimes for queues with as few as twenty servers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.