Abstract

We present a map from the travelling salesman problem (TSP), a prototypical NP-complete combinatorial optimisation task, to the ground state associated with a system of many-qudits. Conventionally, the TSP is cast into a quadratic unconstrained binary optimisation (QUBO) problem, that can be solved on an Ising machine. The size of the corresponding physical system's Hilbert space is $2^{N^2}$, where $N$ is the number of cities considered in the TSP. Our proposal provides a many-qudit system with a Hilbert space of dimension $2^{N\log_2N}$, which is considerably smaller than the dimension of the Hilbert space of the system resulting from the usual QUBO map. This reduction can yield a significant speedup in quantum and classical computers. We simulate and validate our proposal using variational Monte Carlo with a neural quantum state, solving the TSP in a linear layout for up to almost 100 cities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.