Abstract
LiMPO4 (M = Mn, Fe) olivine phosphates are important materials for battery applications due to their stability, safety, and reliable recharge cycle. Despite continuous experimental and computational investigations, several aspects of these materials remain challenging, including conductivity dimensionality and how it maps onto Li pathways. In this work, we use a refined version of our finite temperature molecular dynamics “shooting” approach, originally designed to enhance Li hopping probability. We perform a comparative analysis of ion mobility in both materials, focused on many-particle effects. Therein, we identify main [010] diffusion channels, as well as means of interchannel couplings, in the form of Li lateral [001] hopping, which markedly impact the overall mobility efficiency as measured by self-diffusion coefficients. This clearly supports the need of many-particle approaches for reliable mechanistic investigations and for battery materials benchmarking due to the complex nature of the diffusion and transport mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.