Abstract
We introduce a general scheme of many-particle interferometry in which two identical sources are used and ``which-way information'' is eliminated by making the paths of one or more particles identical (path identity). The scheme allows us to generate many-particle entangled states. We provide general forms of these states and show that they can be expressed as superpositions of various Dicke states. We illustrate cases in which the scheme produces maximally entangled two-qubit states (Bell states) and maximally three-tangled states (three-particle Greenberger-Horne-Zeilinger-class states). A striking feature of the scheme is that the entangled states can be manipulated without interacting with the entangled particles; for example, it is possible to switch between two distinct Bell states. Furthermore, each entangled state corresponds to a set of many-particle interference patterns. The visibility of these patterns and the amount of entanglement in a quantum state are connected to each other. The scheme also allows us to change the visibility and the amount of entanglement without interacting with the entangled particles and, therefore, has the potential to play an important role in quantum information science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.