Abstract

Many cognitive and computational challenges accompany the design of complex engineered systems. This study proposes the many-objective visual analytics (MOVA) framework as a new approach to the design of complex engineered systems. MOVA emphasizes learning through problem reformulation, enabled by visual analytics and many-objective search. This study demonstrates insights gained by evolving the formulation of a General Aviation Aircraft (GAA) product family design problem. This problem's considerable complexity and difficulty, along with a history encompassing several formulations, make it well-suited to demonstrate the MOVA framework. The MOVA framework results compare a single objective, a two objective, and a ten objective formulation for optimizing the GAA product family. Highly interactive visual analytics are exploited to demonstrate how decision biases can arise for lower dimensional, highly aggregated problem formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.