Abstract

Due to the security and scalability features of hybrid cloud architecture, it can better meet the diverse requirements of users for cloud services. And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud. However, most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling, even ignoring the conflicts between its security privacy features and other requirements. Based on the above problems, a many-objective hybrid cloud task scheduling optimization model (HCTSO) is constructed combining risk rate, resource utilization, total cost, and task completion time. Meanwhile, an opposition-based learning knee point-driven many-objective evolutionary algorithm (OBL-KnEA) is proposed to improve the performance of model solving. The algorithm uses opposition-based learning to generate initial populations for faster convergence. Furthermore, a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range. By comparing the experiments with other excellent algorithms on HCTSO, OBL-KnEA achieves excellent results in terms of evaluation metrics, initial populations, and model optimization effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.