Abstract

We have measured fluorescence energy-transfer (FET) kinetics from a dansyl fluorophore (Dns) introduced by derivatization of a Cys side-chain to the Fe(III) heme covalently attached to unfolded yeast iso-1 cytochrome c (cyt). To gain a global picture of the unfolded state, we examined variants with the fluorophore attached on three different helices (K4C, E66C, K99C) and in three different loops (H39C, D50C, L85C). Analysis of the FET kinetics data gave distributions of distances between the fluorescent donor and acceptor; these distributions demonstrate that the guanidine hydrochloride (GuHCl)-denatured polypeptide ensemble is not a simple random coil. Although misligation imposes some constraints, it is not the only source of structural complexity in the unfolded protein. Our FET kinetics data reveal a high degree of heterogeneity in the unfolded ensemble of cytochrome c. We detect relatively large populations of compact structures in unfolded Dns(C50)cyt, Dns(C39)cyt, and Dns(C66)cyt. These structures likely play a role in forming a hydrophobic core during the folding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.