Abstract

The nuclear factor-kappaB (NF-kappaB) family of dimeric transcription factors plays pivotal roles in physiologic and pathologic processes, including immune and inflammatory responses and development and progression of various human cancers. Inactive NF-kappaB dimers normally exist in the cytoplasm in association with inhibitor proteins belonging to the inhibitor of NF-kappaB (IkappaB) family of related proteins. Activation of NF-kappaB involves its release from IkappaB and subsequent nuclear translocation to induce expression of target genes. Intense research effort has revealed many distinct signaling pathways and mechanisms of NF-kappaB activation induced by immune and inflammatory stimuli. These aspects of NF-kappaB biology have been amply reviewed in the literature. However, those that involve DNA-damaging agents are less well understood, and multiple conflicting pathways and mechanisms have been described in the literature. In this review, we summarize the proposed mechanisms of NF-kappaB activation by various DNA-damaging agents, discuss the significance of such activation in the context of cancer treatment, and highlight some of the critical questions that remain to be addressed in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.