Abstract

The many-body effect in the L 3-M 23M 23 Auger-electron spectroscopy (AES) spectrum of metallic Zn is discussed. The lifetime width and residual relaxation energy shift of the two M 23-hole state are governed by the (super) Coster-Kronig (sCK) transitions of two M 23-hole state. The residual relaxation energy shift and decay width of the two M 23-hole state are calculated in an average configuration by an ab initio atomic many-body theory. The agreement with experiment is good. To elucidate the many-body effect in the two-hole states, it is necessary to be able to discriminate individual components of the multiplet-split AES spectrum. We discuss how to discriminate individual components of the multiplet-split L 3-M 23M 23 AES spectrum of metallic Zn by angle-resolved Auger-photoelectron coincidence spectroscopy (AR-APECS) in order to determine accurately their line shapes, multiplet splitting energies, and spin states (singlet etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.