Abstract
Quantum many-body phases offer unique properties and emergent phenomena, making them an active area of research. A promising approach for their experimental realization in model systems is to adiabatically follow the ground state of a quantum Hamiltonian from a product state of isolated particles to one that is strongly-correlated. Such protocols are relevant also more broadly in coherent quantum annealing and adiabatic quantum computing. Here we explore one such protocol in a system of ultracold atoms in an optical lattice. A fully magnetized state is connected to a correlated zero-magnetization state (an xy-ferromagnet) by a many-body spin rotation, realized by sweeping the detuning and power of a microwave field. The efficiency is characterized by applying a reverse sweep with a variable relative phase. We restore up to of the original magnetization independent of the relative phase, evidence for the formation of correlations. The protocol is limited by the many-body gap of the final state, which is inversely proportional to system size, and technical noise. Our experimental and theoretical studies highlight the potential and challenges for adiabatic preparation protocols to prepare many-body eigenstates of spin Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.