Abstract
The non-trivial phase structure of the eigenstates of many-body quantum systems severely limits the applicability of quantum Monte Carlo, variational, and machine learning methods. Here, we study real-valued signful ground-state wave functions of frustrated quantum spin systems and, assuming that the tasks of finding wave function amplitudes and signs can be separated, show that the signs can be easily bootstrapped from the amplitudes. We map the problem of finding the sign structure to an auxiliary classical Ising model defined on a subset of the Hilbert space basis. We show that the Ising model does not exhibit significant frustrations even for highly frustrated parental quantum systems, and is solvable with a fully deterministic O(Klog K)-time combinatorial algorithm (where K is the Ising model size). Given the ground state amplitudes, we reconstruct the signs of the ground states of several frustrated quantum models, thereby revealing the hidden simplicity of many-body sign structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.