Abstract

Many-body quantum systems present a rich phenomenology which can be significantly altered when they are in contact with an environment. In order to study such setups, a number of approximations are usually performed, either concerning the system, the environment, or both. A typical approach for large quantum interacting systems is to use master equations which are local, Markovian, and in Lindblad form. Here, we present an implementation of the Redfield master equation using matrix product states and operators. We show that this allows us to explore parameter regimes of the many-body quantum system and the environment which could not be probed with previous approaches based on local Lindblad master equations. We also show the validity of our results by comparing with the numerical exact thermofield-based chain-mapping approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.