Abstract

In monolayer transition-metal dichalcogenide semiconductors, many-body correlations can manifest in optical spectra when electron-hole pairs (excitons) are photoexcited into a 2D Fermi sea of mobile carriers. At low carrier densities, the formation of charged excitons (X±) is well documented. However, in WSe2 monolayers, an additional absorption resonance, often called X-', emerges at high electron density. Its origin is not understood. Here, we investigate the X-' state via polarized absorption spectroscopy of gated WSe2 monolayers in magnetic fields to 60T. Field-induced filling and emptying of the lowest optically active Landau level in the K' valley causes repeated quenching of the corresponding optical absorption. Surprisingly, these quenchings are accompanied by absorption changes to higher Landau levels in both K' and K valleys, which are unoccupied. These results cannot be reconciled within a single-particle picture, and demonstrate the many-body nature and intervalley correlations of the X-' quasiparticle state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call