Abstract

Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.