Abstract

Predictive modeling and understanding of binding of organic molecule-decorated graphene is an essential prerequisite for tuning their electronic and magnetic properties. Many-body dispersion (MBD) interactions are known to contribute significantly to the binding of condensed matters, but the role of MBD energy in self-assembled organic monolayers on epitaxial graphene remains largely unexplored. Here, by using the state-of-the-art DFT + MBD method, we for the first time investigate model π-π adsorption systems that are composed of two typical acceptor molecules, TCNQ and F4-TCNQ, and graphene sheets. The computed binding energies from the DFT + MBD method are consistently smaller than those from the pairwise-based van der Waals (vdW) inclusive method, such as DFT + vdW, due to the accurate capture of both electrodynamic screening and many-body effects in the former case. Notably, many-body effects contribute more to the low-coverage adsorption systems than they do when the substrate is highly covered by the adsorbates. This somewhat counter-intuitive result is attributed to the fact that each molecule contributes less to the polarization of the hybrid interface at high coverage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.