Abstract

Many-body interactions in water are known to be important but difficult to treat in atomistic models and often are included only as a correction. Polarizable models treat them explicitly, with long-range many-body potentials, within their classical approximation. However, their calculation is computationally expensive. Here, we evaluate how relevant the contributions to the many-body interaction associated with different coordination shells are. We calculate the global energy minimum, and the corresponding configuration, for nanoclusters of up to 20 water molecules. We find that including the first coordination shell, i.e., the five-body term of the central molecule, is enough to approximate within 5% the global energy minimum and its structure. We show that this result is valid for three different polarizable models, the Dang-Chang, the MB-pol, and the Kozack-Jordan potentials. This result suggests a strategy to develop many-body potentials for water that are reliable and, at the same time, computationally efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call