Abstract

Recent work has shown that Manuka honey, an increasingly popular wound additive with potent antibacterial properties, also has anti-inflammatory properties. However, little research has been done examining its effect on neutrophils. This study investigates the hypothesis that Manuka honey reduces neutrophil superoxide release and chemotaxis and reduces the activation of the inflammatory nuclear factor-κB (NF-κB) signaling pathway under honey's cytotoxic limit. A differentiated HL-60 cell line was used as a neutrophil model and cultured in various concentrations of Manuka honey for 3 and 24 hours to measure cytotoxicity via mitochondrial activity and visual trypan-exclusion count. Cytochrome C and Boyden chamber assays were used to measure the effect of Manuka honey on superoxide release and chemotaxis toward fMLP, respectively. Additionally, a Western blot for NF-κB inhibitor α (IκBα) was performed to measure Manuka honey's effect on the NF-κB pathway via IκBα phosphorylation. The results indicate a cytotoxic limit of 3-5% v/v. The presence of 1% honey decreased superoxide release at 24 hours. The 0.5, 1, and 3% honey concentrations reduced chemotaxis and IκBα phosphorylation in a dose-dependent fashion. These results suggest that Manuka honey significantly reduces neutrophil recruitment and inflammatory behavior in the wound site in a dose-dependent fashion under the cytotoxic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.