Abstract

Abstract The aim of this research is to show useful utilization of agricultural residues such as cotton stalks and branches of pistachio, pomegranate, and Haloxylon species with recycled plastic in manufacturing wood–plastic composite (WPC) panels. Wood–plastic panels were made from a combination of agricultural residues (as natural fiber) and recycled plastic (as resin) at 50 percent, and 60 percent by weight fiber loading. Density and dimensions of the panels were 0.61 g/cm3 and 350 by 350 by 14 mm, respectively. Physical and mechanical properties of the panels including thickness swelling, water absorption, static bending (modulus of rupture and modulus of elasticity ), and internal bond were investigated. Physical and mechanical properties of the WPC panels decreased with an increase in fiber content from 50 percent to 60 percent. Physical and mechanical properties of samples made with 50 percent plastic were higher than samples with 40 percent plastic. The best values of physical and mechanical properties of the WPC panels were found at 10 percent and 5 percent Haloxylon particle loading, respectively. The highest values of mechanical properties of WPC panels were found at 50 percent plastic and 5 percent Haloxylon particle loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call