Abstract

Single-atom alloy (SAA) catalysts exhibit huge potential in heterogeneous catalysis. Manufacturing SAAs requires complex and expensive synthesis methods to precisely control the atomic scale dispersion to form diluted alloys with less active sites and easy sintering of host metal, which is still in the early stages of development. Here, we address these limitations with a straightforward strategy from a brand-new perspective involving the 'islanding effect' for manufacturing SAAs without dilution: homogeneous RuNi alloys were continuously refined to highly dispersed alloy-islands (~ 1 nm) with completely single-atom sites where the relative metal loading was as high as 40%. Characterized by advanced atomic-resolution techniques, single Ru atoms were bonded with Ni as SAAs with extraordinary long-term stability and no sintering of the host metal. The SAAs exhibited 100% CO selectivity, over 55 times reverse water-gas shift (RWGS) rate than the alloys with Ru cluster sites, and over 3-4 times higher than SAAs by the dilution strategy. This study reports a one-step manufacturing strategy for SAA's using the wetness impregnation method with durable high atomic efficiency and holds promise for large-scale industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.