Abstract

Copper foil is a key material of printed circuit boards and plays an important role in the conductance of electric circuits and interconnection of electronic components. When high-frequency signals were transmitted in rough copper foil wires, the conductor resistance, wire loss, and signal loss increased because of the skin effect. To reduce the negative influence of the skin effect and improve the quality of the copper foil, a laser shock flattening (LSF) method was proposed to manufacture profile-free copper foil with high performance. It was concluded that the better flattening effect for large-area profile-free copper foil could be achieved at a pulse energy of 0.25 J and an overlap rate of 25%, and its surface roughness decreased by 67.0% from 52.1 nm to 17.2 nm. Subsequently, to determine the mechanism for the flattened deformation of copper foil induced by LSF, the microstructures of the copper foil before and after flattening were characterised using transmission electron microscopy. A higher dislocation density and a few deformation twins were found in the profile-free copper foil. Ultimately, nano-indentation, micro-tensile, and electrochemical corrosion tests indicated that the mechanical properties and corrosion resistance of the copper foil were significantly improved by LSF. This technique would enable the successful fabrication of large-area profile-free copper foil with high performance for the emerging applications of ultra-high-frequency signal communication and printed circuit board manufacture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.