Abstract

The article investigates the development of a manufacturing route for highly porous titanium foams suitable for craniofacial surgery applications, particularly in cranioplasties. The study focuses on the polyurethane replication method for foam production and emphasizes reducing residual gas content, as it significantly affects the mechanical properties and suitability for approval of the foams. Various factors such as starting materials, solvent debinding, heating schedules, and hydrogen atmosphere are analyzed for their impact on residual gas content. It is shown that significant reductions in residual gas content can only be achieved by reworking each step of the process. A combination of initial solvent debinding of the PU template with dimethyl sulphoxide, reduction of suspension additives, use of coarser Gd. 1 powders, and an integrated debinding and sintering process under partial hydrogen atmosphere achieves a significant reduction in residual gas content. This way, the potential for producing titanium foams that comply with relevant standards for craniofacial implants is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call