Abstract

BaTaO2N (BTON) with a generous adsorption edge of ca. 660 nm and high theoretical solar-to-hydrogen conversion efficiency of ca. 20.6% has been extensively investigated for photocatalytic water splitting. In this study, we have successfully prepared a porous BTON nanosheet via employing Ba2Bi3Ta2O11Cl (BBTOC) oxyhalide as a novel nitridation precursor. The oxygen evolution rate of the BTON nanosheet is 108 μmol·h−1, which is three times higher than that of BTON (25.9 μmol·h−1) prepared by conventional solid-state method. The successful construction of porous BTON nanosheet is due to the structural transformation of BBTOC nanosheet precursor and facile evaporation of Bi and Cl elements. The porous nanosheet morphology of BTON can not only promote the transfer of photogenerated charge carriers but also provide abundant reaction sites for the oxygen evolution reaction. This work demonstrates a novel and efficient strategy for preparing oxynitride for efficient solar energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.