Abstract

In the present study, the effect of silica nanoparticles on the formation of nano-mullite phase for use in the manufacture of silicon carbide based ceramic foam filters has been investigated. Polyurethane foam filters were impregnated with nanosilica particles by slip casting. In this method, the effect of different percentages of nanosilica particles in the slurry on compressive strength, density and porosity of ceramic foam filters was investigated. The effect of silica nanoparticles on viscosity of slurry was studied using rheometric test. So, sample S15 was selected to proceed. For thermal treatment of ceramic foams, different sintering temperatures were investigated and the best temperature was reported at 1250 °C. Compressive strength results showed that with increasing nano-silica content, CCS increased. XRD results from the samples showed that the nano-mullite phase was formed at 1250 °C along with silicon carbide and alumina phases. Scanning electron microscope images (SEM) showed that the mullite phase was formed in nano-dimensions in ceramic foam bodies. The formation of mullite phase in the microstructure of the filters is one of the factors of strengthening and increased refractory characteristics. EDS analysis by the scanning electron microscopy of the filter which passed ductile iron melt showed that cast iron inclusions and impurities were mostly consisted from FeO, MnO, SiO2, Al2O3, MgO and CO, which were trapped inside the ceramic filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.