Abstract

The demand for lightweight structures in the automotive and aerospace industry increases permanently, and the importance of lightweight design principles is also increasing in other industrial branches, aiming towards improved energy efficiency and sustainability. Light metals are promising candidates to realize security relevant lightweight components because of their high specific strength; and amongst them, aluminum alloys are the most interesting materials due to their high plasticity and strain to failure, good processability, passivation in oxygen containing atmosphere, and low cost. However, for many applications, their stiffness as well as strength and fatigue behavior at elevated temperature are insufficient. Metal matrix composite (MMC) formation by integration of reinforcements in the form of continuous or discontinuous (short) fibers can yield a high increase in the alloys’ specific mechanical properties at room temperature and at elevated temperature. The integration of fibers with conventional manufacturing techniques like squeeze casting, hot pressing or diffusion bonding leads to restrictions in the component’s geometry. Moreover, these techniques result in elevated process costs mainly caused by long cycle times and the need of additional protective fiber coatings. In the present paper, an alternative method for the manufacturing of aluminum matrix composites is described, combining thermal spraying and semisolid forming (thixoforging) technologies for the formation of fiber prepregs and subsequent forming with simultaneous densification. Therefore, prepregs with the matrix alloy as a thick surface coating on the reinforcement fibers are manufactured in a fast, automated coating process, while reheating, densification and shaping are performed in a separate process, allowing an optimization of both processes towards cycle times and resulting material properties. Continuous fiber and short fiber reinforced aluminum matrix composites are manufactured using woven or parallel arranged continuous fibers, or short fibers as a fleece or fiber paper material. For the coating process, twin-wire electric arc spraying is applied as a well established, cost efficient thermal spray technology. The coating process is optimized towards microstructure of the matrix alloy prior to semisolid forming, which requires a globular alloy microstructure, and reduced fiber damage during the high-temperature liquid melt deposition. The thermally sprayed fine-grained matrix material enables semisolid forming at liquid contents of 40-60 vol% of the alloy, with short flow paths, reduced mechanical loads and short cycle times. Thus, limited fiber damage and residual stresses will occur, leading to good mechanical material properties. A production line for industrial-scale coating of fiber fabric coils in a continuous process is introduced in order to provide prepregs of various fiber-reinforcement materials and fiber architectures; moreover, a winding equipment for simultaneous fiber winding and coating is presented that enables local reinforcement for components with adapted, tailored composite material design.

Highlights

  • This paper describes a manufacturing process for fiber reinforced aluminum alloys

  • Fiber reinforced aluminum is a kind of material that has unique properties, like high specific strength and stiffness, if the characteristics of composites are considered during the manufacturing process, e. g. accurate fiber orientation, control of residual stresses, or the properties of the fiber/matrix interface

  • Industrial cost targets can only be achieved by the application of carbon fibers, which have good mechanical properties but yet reasonable costs as compared to alumina or SiC fibers

Read more

Summary

Introduction

This paper describes a manufacturing process for fiber reinforced aluminum alloys. Thereby, fiber preforms consisting of short fibers, woven fiber cloth or unidirectional (UD) fiber reinforcement are coated with the matrix alloy by a thermal spraying process. The axial fibers show interface debonding and pull-out effects in some areas, whereas in other areas, fiber fracture is close to the metal fracture surface and the matrix is deformed in load direction, as could be expected for MMC These observations lead to the assumption that the thermally sprayed, reheated and thixoforged aluminum matrix is more brittle than the original Al 6Si alloy and the fiber/matrix bonding is weak, leading to early crack formation and a reduction in the composite’s mechanical properties. Due to the high deposition rate of twin-wire electric arc spraying, it has the advantage of a fast and easy process This continuous coating system was developed due to the fact that MMC require a high fiber volume content in order to achieve mechanical properties (mainly in terms of stiffness) that justify the higher production costs, and typical components The coated prepregs can be trimmed in a subsequent step by NC cutting systems, providing reduced material wastage

Robot movement movement
Findings
Summary and Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call