Abstract

Laser powder bed fusion (LPBF) provides an excellent opportunity to use custom powders for complex objects without extensive machining. This opportunity is attractive for brittle and hard intermetallics, but is challenging due to cracking, anisotropy, and the formation of non-equilibrium phases. The present investigation is focused on a development of the process parameters for pre-alloyed Mn-46 at.%Al gas atomized intermetallic powder, which is a promising magnetic material. A hierarchical approach involving optimization of the process parameters for a single track, a single layer, and then a 3D specimen was applied. The manufacturing of single tracks was performed at scanning speeds of 0.06-3.4 m/s and laser powers of 50-350 W. Test parameters guaranteeing stable single track with constant width and height, and sufficient remelting depth were selected for further manufacturing. Surface morphology, chemical composition, crack density and distribution, and the microstructures in the final materials were investigated. It was shown that the consists mostly of the ε-phase with some amounts of equilibrium γ2 and β phases and the ferromagnetic τ-phase. The presence of the ε-phase shows a potential to use heat treatment to form τ-phase magnetic phase in AM Mn-46 at.%Al. Future investigations will clarify the applicability of LPBF to manufacture Mn-46%Al for magnetic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.