Abstract

Composite materials are widely used as main parts and structural components in different fields, especially for automotive and military applications. Although these materials supply different advantages comparing to the metals, their implementation in engineering applications is limited due to low electrical and thermal properties and low resistance to erosion. To enhance these above-mentioned properties, the metallization of composite materials by creating a thin metal film on their surface can be achieved. Among different coating deposition techniques, Cold Spray appears to be the most suitable one for the metallization of temperature-sensitive materials such as polymers and composites with a thermoplastic matrix. This process relies on kinetic energy for the formation of the coating rather than on thermal energy and consequent erosion and degradation of the polymer-based composite can be avoided. In the last years, a new method to produce composite materials, as known as Fused Filament Fabrication (FFF), has been developed for industrial applications. This technique consists of a 3D printing process that involves the thermal extrusion of thermoplastic polymer and fibers in the form of filaments from a heated mobile nozzle. The implementation of this new technique is leading to the manufacturing of customized composite materials for the cold spray application. In the presented experimental campaign, Onyx material is used as a substrate. This material is made of Nylon, a thermoplastic matrix, and chopped carbon fibers randomly dispersed in it. Aluminum powders were cold sprayed on the Onyx substrate with a low-pressure cold spray (LPCS) system. This study aims to investigate the possibility of the metalizing 3D-printed composite material by cold spray technology. For this purpose, optical and microscopical analyses are carried out. Based on the results, the feasibility of the process and the influence of the morphology of the substrate are discussed, and optimal spraying conditions are proposed.

Highlights

  • In the last years, the metallization of polymer materials has received increasing attention in a wide range of applications, such as in microelectronics or aeronautic industries [1]

  • Among all the other coating techniques proposed, the Cold Spray has been demonstrated to be a feasible approach to metalize polymers and polymeric composites [5] and able to avoid the thermal degradation of the polymers caused by the high operating temperatures

  • The object of this study is to investigate the feasibility of the metallization of the presented 3D-printed composite materials employing a low-pressure cold spray technology

Read more

Summary

Introduction

The metallization of polymer materials has received increasing attention in a wide range of applications, such as in microelectronics or aeronautic industries [1]. To enhance the electrical and thermal properties and the resistance to erosion of these materials, the metallization of their surfaces by creating a thin metal film on their surface can be achieved. For this purpose, several coating technologies have been investigated, such as physical vapor deposition (PVD)[2], chemical vapor deposition (CVD)[3], or plasma-enhanced chemical vapor deposition (PECVD) [4]. Several coating technologies have been investigated, such as physical vapor deposition (PVD)[2], chemical vapor deposition (CVD)[3], or plasma-enhanced chemical vapor deposition (PECVD) [4] These techniques can accomplish the metallization of the polymers, the thickness of the deposits could not exceed a few micrometers and the costs of the used equipment are expensive. The main characteristic of the cold spray technique is that it relies more on kinetic energy than on thermal energy and that makes this technology suitable for the metallization of temperature-sensitive materials like polymers and composite materials

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call